Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 131: 111821, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38484664

RESUMO

Chlamydia trachomatis (C.tr), an obligate intracellular pathogen, causes asymptomatic genital infections in women and is a leading cause of preventable blindness. We have developed in vivo mouse models of acute and chronic C. trachomatis genital infection to explore the significance of macrophage-directed response in mediating immune activation/suppression. Our findings reveal that during chronic and repeated C. trachomatis infections, Th1 response is abated while Treg response is enhanced. Additionally, an increase in exhaustion (PD1, CTLA4) and anergic (Klrg3, Tim3) T cell markers is observed during chronic infection. We have also observed that M2 macrophages with low CD40 expression promote Th2 and Treg differentiation leading to sustained C. trachomatis genital infection. Macrophages infected with C. trachomatis or treated with supernatant of infected epithelial cells drive them to an M2 phenotype. C. trachomatis infection prevents the increase in CD40 expression as observed in western blots and flow cytometric analysis. Insufficient IFNγ, as observed during chronic infection, leads to incomplete clearance of bacteria and poor immune activation. C. trachomatis decapacitates IFNγ responsiveness in macrophages via hampering IFNγRI and IFNγRII expression which can be correlated with poor expression of MHC-II, CD40, iNOS and NO release even following IFNγ supplementation. M2 macrophages during C. trachomatis infection express low CD40 rendering immunosuppressive, Th2 and Treg differentiation which could not be reverted even by IFNγ supplementation. The alternative macrophages also harbour high bacterial load and are poor responders to IFNγ, thus promoting immunosuppression. In summary, C. trachomatis modulates the innate immune cells, attenuating the anti-chlamydial functions of T cells in a manner that involves decreased CD40 expression on macrophages.


Assuntos
Antígenos CD40 , Infecções por Chlamydia , Chlamydia trachomatis , Interferon gama , Macrófagos , Animais , Feminino , Humanos , Camundongos , Antígenos CD40/metabolismo , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/fisiologia , Células Epiteliais , Ativação Linfocitária , Macrófagos/metabolismo , Infecção Persistente , Interferon gama/imunologia , Interferon gama/metabolismo
2.
J Membr Biol ; 256(4-6): 393-411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938349

RESUMO

Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.


Assuntos
Bactérias , Evasão da Resposta Imune , Bactérias/metabolismo , Transporte Proteico , Lipídeos , Metabolismo dos Lipídeos
3.
Cytokine ; 169: 156285, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393846

RESUMO

Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.


Assuntos
Anti-Infecciosos , Antineoplásicos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Bactérias , Antineoplásicos/uso terapêutico
4.
Int Immunopharmacol ; 123: 110688, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499396

RESUMO

Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPß, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1ß) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1ß, decreased TGF-ß release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-ß, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.


Assuntos
Azitromicina , Fatores Estimuladores de Colônias , Receptor de Fator Estimulador de Colônias de Macrófagos , Animais , Camundongos , Antibacterianos/farmacologia , Azitromicina/farmacologia , Citocinas/metabolismo , Interleucina-12/metabolismo , Macrófagos , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos
5.
Immunol Res ; 71(2): 130-152, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36266603

RESUMO

Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte-macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.


Assuntos
Relevância Clínica , Fator Estimulador de Colônias de Macrófagos , Fator Estimulador de Colônias de Macrófagos/fisiologia , Macrófagos , Transdução de Sinais , Citocinas
6.
Microb Pathog ; 175: 105929, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565970

RESUMO

Chlamydia trachomatis and human papilloma virus (HPV) are the two most common sexually transmitted infections among women. HPV infection can increase the risk of cervical cancer and infertility while C. trachomatis induces pelvic inflammatory disease. Here, we elucidate the molecular conundrum of the co-infection of HPV and C. trachomatis infection and their outcome with respect to cervical cancer. HPV infection was mimicked by overexpression of HPV 16 E6-E7 or using human cervical cell lines SiHa and C33a (with and without HPV 16 respectively). HPV transfected co-infection increased cell proliferation and resistance to H202 and TNFα-induced cell death compared to individual infections. These changes are brought by alteration in the cell cycle proteins (CDK2, CDK6 and Bcl2) and thus increasing the stemness of the epithelial cells as observed by increased colony forming units and CD133 expression. The co-infection also induces change in the mRNA levels of cells which are involved in mesenchymal phenotype. C. trachomatis in presence of E6-E7 overexpression caused cervical epithelial neoplasm in mice with increased Ki67 expression and decreased P53 levels. Stem cell marker, CD133 expression also increased in the cervical tissues of both infected and co-infected group of mice. The cells obtained from the cervix were able to grow continuously in ex vivo cultures. All these results indicate the co-existence of the C. trachomatis and HPV 16 might increase the risk of cervical cancer.


Assuntos
Infecções por Chlamydia , Coinfecção , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Carcinogênese/genética , Chlamydia trachomatis/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Terapia de Imunossupressão , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Oncogenes , Papillomaviridae/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia
7.
Cytokine ; 157: 155948, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764025

RESUMO

Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFß. In addition, the monokines like IL-12, IL-1ß, IL-6, IL-10 and TGFß direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFß. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.


Assuntos
Interleucina-10 , Neoplasias , Citocinas , Humanos , Monócitos/patologia , Monocinas , Fator de Crescimento Transformador beta , Microambiente Tumoral , Fator de Necrose Tumoral alfa
8.
Immunol Res ; 70(5): 578-606, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35610534

RESUMO

Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1ß and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.


Assuntos
Inflamassomos , Interleucina-18 , Imunidade Adaptativa , Colesterol , Citocinas/metabolismo , Imunidade Inata
9.
Phytomedicine ; 99: 153904, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35231825

RESUMO

BACKGROUND: Berberine is a plant-derived alkaloid with potent anti-cancer activities. Berberine may redirect the tumor-promoting immunosuppressive M2 macrophages, to tumoricidal activated M1 macrophages. But such an anti-tumor function remains to be demonstrated. HYPOTHESIS: Polarization of macrophages to an immunosuppressive phenotype within the tumor microenvironment promotes tumor growth and contributes to resistance to chemotherapy. We examined if berberine would target macrophage polarization to reinstate anti-tumor immune response. STUDY DESIGN: Using a B16F10 mouse melanoma model, we assessed berberine-induced re-polarization of immunosuppressive M2 macrophages to anti-tumor M1 macrophages and subsequent T-cell activation within the immunosuppressive tumor microenvironment. METHODS: The B16F10 culture supernatant along with tumor antigen was used as tumor mimicking conditioned medium (CM). The bone marrow-derived macrophages were cultured in CM for 5 days. The CM-induced skewing of macrophages to M2-like phenotype was confirmed by flow cytometry and ELISA. The T-cells were co-cultured with macrophages to decipher the effect of berberine on T-cell differentiation. In vivo efficacy of berberine was analyzed using melanoma model of solid tumor. RESULTS: Berberine inhibited rIL-6-induced STAT-3 phosphorylation and IL-10 release from B16F10 cells. It enhanced tumor antigen-induced IL-1ß, IL-12 and TNFα, but suppressed IL-6 and TGF-ß release. Berberine significantly prevented the tumor antigen-mediated IL-10-enhanced IL-6 and TGF-ß expression. The CM skewed the bone marrow-derived macrophages to CD206-high but MHC-II-low M2-like tumor-associated macrophages. Berberine partially prevented the generation of these macrophages and was associated with reduced C/EBPß and Egr2 mRNA expression and lowered IL-10 and TGF-ß production. Berberine significantly reduced Arginase-1 expression in CM-treated M1 and M2-like macrophages. Berberine increased MHC-II and CD40 expression on the macrophages augmenting the CTL activity and the number of IFNγ-producing CD4+ T-cells. Berberine significantly lowered tumor volume, weight and enhanced the frequency of M1-like macrophages in mice. CONCLUSION: These data indicate that berberine interferes with pro-tumor macrophage polarization and IL-10 and TGF-ß release but restores Tcell anti-tumor cytotoxicity in the tumor microenvironment.

10.
Immunopharmacol Immunotoxicol ; 44(3): 316-325, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35225131

RESUMO

BACKGROUND: During Aspergillus fumigatus mediated lung inflammation, NLRP3 inflammasome is rapidly activated that aggravates IL-1ß production contributing to lung inflammation. Previously, we have shown the protective role of SYK-1 inhibition in inhibiting inflammasome activation during lung inflammation. In the current manuscript, we explored the protective role of direct caspase-1 inhibition during ß-glucan-induced lung inflammation. METHODS: We have mimicked the lung inflammation by administering intranasal ß-glucan in mice model. YVAD was used for caspase-1 inhibition. RESULTS: We have shown that caspase-1 inhibition by YVAD did not alter inflammasome independent inflammatory cytokines, while it significantly reduced inflammasome activation and IL-1ß secretion. Caspase-1 inhibited bone marrow derived dendritic cells (BMDCs), co-cultured with T cells showed decreased T-cell proliferation and direct them to secrete high TGF-ß and IL-10 compared to the T cells co-cultured with ß-glucan primed dendritic cells. Caspase-1 inhibition in BMDCs also induced IL-22 secretion from CD4+T cells. Caspase-1 inhibition in intranasal ß-glucan administered mice showed decreased tissue damage, immune cell infiltration and IgA secretion compared to control mice. Further, splenocytes challenged with ß-glucan show high IL-10 secretion and increased FOXp3 and Ahr indicating an increase in regulatory T cells on caspase-1 inhibition. CONCLUSION: Caspase-1 inhibition can thus be an attractive target to prevent inflammation mediated tissue damage during Aspergillus fumigatus mouse model and can be explored as an attractive therapeutic strategy.HIGHLIGHTSCaspase-1 inhibition protects lung damage from inflammation during ß-glucan exposureCaspase-1 inhibition in dendritic cells decreases IL-1ß production resulting in decreased pathogenic Th17Caspase-1 inhibition promotes regulatory T cells thereby inhibiting lung inflammation.


Assuntos
Pneumonia , beta-Glucanas , Animais , Caspase 1 , Inflamassomos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-10 , Interleucina-17 , Interleucina-1beta , Interleucinas , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , beta-Glucanas/farmacologia
11.
Exp Cell Res ; 402(1): 112563, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757809

RESUMO

Development is an irreversible process of differentiating the undifferentiated cells to functional cells. Brain development involves generation of cells with varied phenotype and functions, which is limited during adulthood, stress, damage/degeneration. Cellular reprogramming makes differentiation reversible process with reprogramming somatic/stem cells to alternative fate with/without stem cells. Exogenously expressed transcription factors or small molecule inhibitors have driven reprogramming of stem/somatic cells to neurons providing alternative approach for pre-clinical/clinical testing and therapeutics. Here in, we report a novel approach of microRNA (miR)- induced trans-differentiation of macrophages (CD11b high) to induced neuronal cells (iNCs) (neuronal markershigh- Nestin, Nurr1, Map2, NSE, Tubb3 and Mash1) without exogenous use of transcription factors. miR 9, 124, 155 and 224 successfully transdifferentiated macrophages to neurons with transient stem cell-like phenotype. We report trans differentiation efficacy 18% and 21% with miR 124 and miR 155. in silico(String 10.0, miR gator, mESAdb, TargetScan 7.0) and experimental analysis indicate that the reprogramming involves alteration of pluripotencygenes like Oct4, Sox2, Klf4, Nanog and pluripotency miR, miR 302. iNCs also shifted to G0 phase indicating manipulation of cell cycle by these miRs. Further, CD133+ intermediate cells obtained during current protocol could be differentiated to iNCs using miRs. The syanpsin+ neurons were functionally active and displayed intracellular Ca+2 evoke on activation. miRs could also transdifferentiate bone marrow-derived macrophages and peripheral blood mononuclear cells to neuronal cells. The current protocol could be employed for direct in vivo reprogramming of macrophages to neurons without teratoma formation for transplantation and clinical studies.


Assuntos
Diferenciação Celular/genética , MicroRNAs/genética , Animais , Transdiferenciação Celular/genética , Reprogramação Celular/genética , Humanos , Fator 4 Semelhante a Kruppel , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
ACS Chem Neurosci ; 10(3): 1230-1239, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380833

RESUMO

We report for the very first time the discovery of amyloid-like self-assemblies formed by the nonaromatic single amino acids cysteine (Cys) and methionine (Met) under neutral aqueous conditions. The structure formation was assessed and characterized by various microscopic and spectroscopic techniques such as optical microscopy, phase contrast microscopy, scanning electron microscopy, and transmission electron microscopy. The mechanism of self-assembly and the role of hydrogen bonding and thiol interactions of Cys and Met were assessed by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and solid state NMR along with various control experiments. In addition, molecular dynamics simulations were carried out to gain insight into assembly initiation. Further, Thioflavin T and Congo red binding assays with Cys and Met structures indicated that these single amino acid assemblies may have amyloid-like characteristics. To understand the biological significance of the Cys and Met structures, cytotoxicity assays of the assemblies were performed on human neuroblastoma IMR-32 cells and monkey kidney cells (COS-7). The results revealed that both Cys and Met fibers were cytotoxic. The cell viability assay further supported the hypothesis that aggregation of single amino acid may contribute to the etiology of metabolic disorders like cystinuria and hypermethioninemia. The results presented in this study are striking, and to the best of our knowledge this is the first report which demonstrates that nonaromatic amino acids like Cys and Met can undergo spontaneous self-assembly to form amyloidogenic aggregates. The results presented are also consistent with the established generic amyloid hypothesis and support a new paradigm for the study of the etiology of single amino acid initiated metabolic disorders in amyloid related diseases.


Assuntos
Amiloide/química , Cisteína/química , Metionina/química , Amiloide/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Cisteína/metabolismo , Humanos , Ligação de Hidrogênio , Metionina/metabolismo , Água/química
13.
Int Immunopharmacol ; 54: 375-384, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29202301

RESUMO

Repeated exposure to the fungal pathogen Aspergillus fumigates triggers spleen tyrosine kinase (SYK) signalling through dectin-1 activation, which is associated with deleterious airway inflammation. ß-Glucan-induced dectin-1 signalling activates the NLRP3 inflammasome, which in turn rapidly produces IL-1ß, a master regulator of inflammation. IL-1ß expression results in Th17/Treg imbalance, pulmonary inflammation, and bystander tissue injury. This study reports that 3,4 methylenedioxy-ß-nitrostyrene (MNS), a potent SYK inhibitor, markedly decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines in vitro. Furthermore, SYK inhibition markedly decreased ß-glucan-induced IL-1ß expression, suggesting that SYK is indispensable for NLRP3 inflammasome activation. Decreased IL-1ß expression correlated with reduced Th17 response and enhanced immunosuppressive Treg response. Notably, SYK inhibition ameliorated inflammation caused by repeated intranasal ß-glucan challenge in BALB/C mice. SYK inhibition also restored the Th17/Treg balance via decreased Th17 and increased Treg responses, as evidenced by decreased IL-17 and ror-γ levels. Additionally, inhibition of SYK increased IL-10 secreting CD4+FOXP3+ T cells that accompanied reduced T cell proliferation. Decreased IgA in the Bronchoalveolar lavage (BAL) fluid and serum also indicated the immunosuppressive potential of SYK inhibition. Histopathology data revealed that repeated ß-glucan challenge caused substantial pulmonary damage, as indicated by septal thickening and interstitial lymphocytic, neutrophil and granulocyte recruitment. These processes were effectively prevented by SYK inhibition, resulting in lung protection. Collectively, our findings suggest that SYK inhibition ameliorates dectin-1- mediated detrimental pulmonary inflammation and subsequent tissue damage. Therefore, SYK can be a new target gene in the therapeutic approach against fungal induced airway inflammation.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Pulmão/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Baço/metabolismo , Quinase Syk/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Dioxolanos/farmacologia , Terapia de Imunossupressão , Inflamassomos/metabolismo , Lectinas Tipo C/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , beta-Glucanas/imunologia
14.
Cell Mol Neurobiol ; 37(2): 351-359, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26961545

RESUMO

During acute brain injury and/or sterile inflammation, release of danger-associated molecular patterns (DAMPs) activates pattern recognition receptors (PRRs). Microglial toll-like receptor (TLR)-4 activated by DAMPs potentiates neuroinflammation through inflammasome-induced IL-1ß and pathogenic Th17 polarization which critically influences brain injury. TLR4 activation accompanies increased CD40, a cognate costimulatory molecule, involved in microglia-mediated immune responses in the brain. During brain injury, excessive release of extracellular ATP (DAMPs) is involved in promoting the damage. However, the regulatory role of CD40 in microglia during ATP-TLR4-mediated inflammasome activation has never been explored. We report that CD40, in the absence of ATP, synergizes TLR4-induced proinflammatory cytokines but not IL-1ß, suggesting that the response is independent of inflammasome. The presence of ATP during TLR4 activation leads to NLRP3 inflammasome activation and caspase-1-mediated IL-1ß secretion which was inhibited during CD40 activation, accompanied with inhibition of ERK1/2 and reactive oxygen species (ROS), and elevation in p38 MAPK phosphorylation. Experiments using selective inhibitors prove indispensability of ERK 1/2 and ROS for inflammasome activation. The ATP-TLR4-primed macrophages polarize the immune response toward pathogenic Th17 cells, whereas CD40 activation mediates Th1 response. Exogenous supplementation of IFN-γ (a Th1 cytokine and CD40 inducer) results in decreased IL-1ß, suggesting possible feedback loop mechanism of inflammasome inhibition, whereby IFN-γ-mediated increase in CD40 expression and activation suppress neurotoxic inflammasome activation required for Th17 response. Collectively, the findings indicate that CD40 is a novel negative regulator of ATP-TLR4-mediated inflammasome activation in microglia, thus providing a checkpoint to regulate excessive inflammasome activation and Th17 response during DAMP-mediated brain injury.


Assuntos
Trifosfato de Adenosina/farmacologia , Antígenos CD40/farmacologia , Inflamassomos/metabolismo , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos
15.
Phytomedicine ; 23(7): 736-44, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235712

RESUMO

BACKGROUND: Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. HYPOTHESIS: EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. STUDY DESIGN: Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. METHODS: Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-ß mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. RESULTS: We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, ß-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, ß-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF-ß secretion from N2a cells was potentiated by high glucose and negatively regulated by berberine through modulation of TGF-ß receptors II and III. Berberine reverted mesenchymal markers, vimentin and fibronectin, with restoration of epithelial marker E-cadherin, highlighting the role of berberine in reversal of EMT. CONCLUSION: Collectively, the study demonstrates prospective use of berberine against neuroblastoma as elucidated through inhibition of fundamental characteristics of cancer stem cells: tumorigenicity and failure to differentiation and instigates reversal in the EMT.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Berberina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Neuroblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
17.
Int J Inflam ; 2015: 361326, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457222

RESUMO

Microglia activation and neuroinflammation are key events during the progression of neurodegenerative disorders. Microglia exhibits toll-like receptors (TLRs), with predominant expression of TLR4, inducing aberrant neuroinflammation and exacerbated neurotoxicity. Studies suggest that microglia initiate infiltration of T cells into the brain that critically influence disease conditions. We report that LPS-Rs, through TLR4 antagonism, significantly inhibit TLR4 mediated inflammatory molecules like IL-1ß, IL-6, TNF-α, COX-2, iNOS, and NO. LPS-Rs regulates JNK/p38 MAPKs and p65-NF-κB signaling pathways, which we report as indispensible for LPS induced neuroinflammation. LPS-Rs mitigates microglial phagocytic activity and we are first to report regulatory role of LPS-Rs which blocked microglia mediated inflammation and apoptotic cell death. LPS-Rs significantly inhibits expression of costimulatory molecules CD80, CD86, and CD40. Chemokine receptor, CCR5, and T cell recruitment chemokines, MIP-1α and CCL5, were negatively regulated by LPS-Rs. Furthermore, LPS-Rs significantly inhibited lymphocyte proliferation with skewed regulatory T (Treg) cell response as evidenced by increased FOXP3, IL-10, and TGF-ß. Additionally, LPS-Rs serves to induce coordinated immunosuppressive response and confer tolerogenic potential to activated microglia extending neurosupportive microenvironment. TLR4 antagonism can be a strategy providing neuroprotection through regulation of microglia as well as the T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...